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ABSTRACT: Examination of three ADL prototypes, two of which integrate the High Level Architecture (HLA), the 
Sharable Content Object Reference Model (SCORM), and training applications suggests that four basic components 
are needed: a communications link, access to simulation state data, a means to map student performance to simulation 
state data, and a means to map simulation states and student performance to learning objectives.  In two of the 
prototypes, the HLA Run Time Interface (RTI) provides a communications link between an HLA compliant simulation 
and a SCORM Learning Management System (LMS).  The third prototype uses a commercial off-the-shelf game 
platform for this link.  All three prototypes use SCORM content objects to transmit simulation and student state data to 
an LMS, which then identifies simulation scenarios needed to achieve student learning objectives.  A more standardized 
object-oriented approach with a reusable HLA-SCORM interface object could be developed to both encapsulate 
complex data constructs and transmit state data between the LMS and the simulation environment. 

 
1.  Simulation and Advanced Distributed 

Learning 
However carefully we plan our military operations, 
something, in fact many things, will go wrong.  
Exigencies inevitably arise that we did not anticipate, for 
which we were not prepared, and to which we must 
respond as, literally, a matter of life and death.  As a 
consequence, our training simulations must reflect the 
fluidity of modern operational environments, adapting on 
demand and in real time to the needs and responses of 
their users.  They also must be accessible as needed in 
garrison, in transit to operational trouble spots, and in the 
field.  In short they need to be available anytime, 
anywhere. 

These requirements for adaptability and accessibility 
match the well-noted goals of the Advanced Distributed 
Learning (ADL) initiative [1]. These goals are to ensure 
the availability of education, training, and performance 
aiding materials that are tailored to user requirements and 
accessible anytime, anywhere.   Support for rapidly 
adaptive simulation is, then, a primary component of the 
ADL initiative.  However, these simulations have to start 
somewhere, with something.  In ADL, they begin with 
sharable learning objects.  

The ADL initiative is preparing for a future in which 
communication networks and personal delivery devices 
are pervasive, inexpensive, and effectively transparent to 
users through ease of use, expanded bandwidth, and 
portability. It will establish knowledge libraries, or 
repositories, where learning ‘objects’ may be accumulated 
and cataloged for broad distribution and use.  Because of 

their enhanced accessibility, these objects will be ready 
for assembly on demand and in real time into instructional 
and performance aiding materials that are tailored to the 
capabilities, intentions, and learning state of each 
individual or group of individuals needing them. 

 
2.  Learning Objects and SCORM 
To date much of the ADL effort has been devoted to the 
specification of instructional objects that will populate 
learning libraries and other Web-available repositories.   
These objects are separated from context-specific run-
time constraints and proprietary systems so that they can 
be incorporated into other applications.  They have 
common interfaces and data exchange formats.  They are 
accessible so that they can be indexed and readily found 
or “discovered”; interoperable so that they operate across 
a wide variety of hardware, operating systems, and Web 
browsers; durable so that they do not require modification 
as versions of the underlying software systems change; 
and reusable so that they can be adapted and used by 
many different development tools.    

Specifications for these learning objects are provided by 
the Sharable Content Object Reference Model (SCORM).  
SCORM assumes a run-time environment in which these 
objects will be managed by middle-ware Learning 
Management Systems (LMSs).  It is intended to ensure 
that any conforming LMS will be able to access 
conforming repositories of learning objects that have been 
authored by different developers using different tools, 
locate needed objects and launch them in executable 



applications, and provide data exchange among the 
objects [2].  SCORM has evolved through several 
versions, the most current of which (SCORM 2004) can 
be found at http://www.adlnet.org. 

Many technicians, software engineers, instruction 
designers, and cognitive researchers from all economic 
sectors in the Americas, Europe, and Asia have 
participated in the development of SCORM.  The task of 
specifying and developing sharable learning objects has 
become a global effort.  The primary contribution of the 
ADL initiative has been to orchestrate this effort and 
document its results. 

 
3.  SCORM and HLA 
If SCORM is to support the agile simulations envisioned 
by the ADL initiative, it must be harmonized with High 
Level Architecture (HLA) [3].  The bridge to be built 
between simulation, with HLA, on one hand, and ADL, 
with its SCORM specifications, on the other is both a 
technical and instructional challenge.   While similar at a 
high level, HLA and SCORM are very different 
architectures.  This difference is appropriate because they 
address different domains.  HLA is intended to enable a 
multiplicity of processes to connect and transfer 
information, often in real time.  SCORM is intended to 
support directed learning experiences that develop 
specific human competencies. SCORM can provide the 
means to track a learner’s mastery in order to devise an 
appropriate program of instruction. HLA can provide the 
means to deliver simple or complex simulation 
experiences once such a program of instruction has been 
devised. 

The challenge in blending these architectures is 
connecting the “teaching” and “doing” parts of learning in 
one seamless (to the learner) environment.  It requires 
mapping specific skills and competencies to demonstrated 
results in a simulation environment. 

SCORM, therefore, is key to the development, packaging, 
aggregation, and sequencing of instructional material as 
objects.   Its specifications define how these objects can 
be tagged for later discovery in terms of descriptive 
characteristics such as targeted learning objectives.   
Simulations could similarly be developed that map to the 
same vocabulary of descriptors so that a learner, program 
developer, or computer algorithm could discover both 
instruction and simulation objects and retrieve them on 
demand.  This paper discusses three prototype efforts that 
incorporate both HLA and SCORM to discover, retrieve, 
and present contextually relevant objects for instruction 

and simulation and then track a learner’s performance and 
progress toward attaining instructional objectives. 

 
4.  Three Prototype Cases 
Three prototypes are now in development that connect a 
LMS to a simulation platform such that data may be 
exchanged between them.  Two of the three prototypes 
connect to HLA-based simulation; the third uses a 
commercial off the shelf 3D game engine.  All three 
examine methods for exchanging learner performance 
information from the simulation environment to the LMS 
so that the LMS can provide appropriate and relevant 
instruction.  These prototypes build upon discussions of 
similar concepts between the Defense Modeling and 
Simulation Office (DMSO) and ADL as well as 
prototypes sponsored by DMSO in 2002.   

4.1  Case 1: The Boeing Company’s SCORM/HLA 
prototype  

Early in the development of SCORM’s sequencing and 
navigation work, ADL collaborated with Boeing to 
develop instructional use cases that would inform the new 
content sequencing technical specification then in 
development.  Their use case prescribed specific rules and 
sequencing behaviors and described the launching of a 
simulation and the evaluation of learner performance that 
would subsequently affect the instructional path.  During 
the development of the sequencing specification, it was 
decided that more research was required to determine how 
to integrate simulations in a learning management system.  
The prototype described here was developed as a result of 
this work.  

The lead Engineer and Principal Investigator for R&D at 
Boeing’s Training Software Systems in St. Louis created 
a prototype that links an LMS to an HLA-based 
simulation.  This was an internal Boeing research project 
that leveraged Boeing’s existing simulation and training 
capabilities, linking the two for the first time. 

A “lesson” was defined as a collection of sharable content 
objects (SCOs), each addressing one facet of an 
instrument landing system (ILS).  Another SCO acts as a 
“virtual flight instructor” who presents a specific scenario 
to the learner.  The system then initializes a flight 
simulation that fits the scenario.  The learner flies the 
approach while data from the simulation is fed back to the 
learning environment. During the simulation, the SCO 
(the virtual flight instructor) provides feedback such as 
“you are a little too high”.  When the landing is complete, 
end-state data is returned to the LMS for display to the 
learner and for the LMS to use in determining the 
student’s mastery of various learning objectives. 



 
Figure 4.1.  Instructional “set up” prior to launching simulation 

 
 

 

Figure 4.2. The simulation feeding state data back to the LMS 
 



In general, the sequence followed is: 

• The LMS determines the next SCO to present 

• The LMS launches an ADL-conformant SCO 

• The SCO presents lesson objective and lesson 
materials 

• The SCO sends an HLA packet to initialize the 
simulation 

• The Student lands the aircraft in the simulation 

• The simulation sends aircraft information and student 
actions to the SCO using HLA 

• The SCO evaluates student actions, displays feedback 
to student, sends information to the LMS using 
SCORM, and sends override commands to the 
simulation using the HLA provided Run Time 
Interface (RTI). 

• The LMS remediates if necessary or determines next 
SCO… 

Figure 4.1 shows this sequence in action as the SCO is 
used to present the scenario tasking to the student.  Figure 
4.2 shows the feedback provided back to the student as 
aircraft and student state information is carried back and 
forth between the ongoing simulation and the LMS by a 

SCO using an HLA RTI to effect the communication.  
Figure 4.3 shows some of the information exchanged 
between the simulation and the LMS.  Finally, Figure 4.4 
shows the mapping between simulation state data and 
LMS data elements performed by this system. 

The Boeing prototype illustrates how simulation state data 
can be interpreted in terms of a specific instructional 
context and how that data can then be used to modify the 
path through the instructional material.  These capabilities 
are achieved both through thoughtful analysis of 
simulation state data during the design of the instruction 
and by mapping those data to specific instructional 
content and sequencing rules.  At run-time, data from the 
simulation is obtained from the HLA run time interface 
(RTI) and delivered back to the LMS so that it may fire 
rules such as “if not mastered, remediate this objective”.  
The HLA simulation proved a useful environment 
because it can expose state data through the RTI in a 
standardized way.  Notably, the design and analysis of 
data and mapping it to performance data is a non-trivial 
undertaking. 
 

 

 

 

 

  

Id 

 

Type 

 

Time 

 

Latency 

Correct_
response
pattern 

Student_
response 

 

Result 

0 onRunway performance 2:50:32 PM 01:57.6 TRUE TRUE CORRECT 

1 wire performance 2:50:32 PM 01:58.0 2 2 CORRECT 

2 speed performance 2:50:32 PM 01:58.4 125 1 WRONG 

3 flightPath performance 2:50:33 PM 01:58.9 -5 -6 CORRECT 

4 missDistance performance 2:50:33 PM 01:59.3 0 -3.1 CORRECT 

5 hdgError performance 2:50:34 PM 01:59.9 0 0 CORRECT 

6 diveRate performance 2:50:34 PM 0:02:00 1200 1311 CORRECT 

7 flapsDown performance 2:50:35 PM 0:02:01 TRUE TRUE CORRECT 

8 gearDown performance 2:50:36 PM 02:01:6 TRUE TRUE CORRECT 

 

Figure 4.3  Simulation state data obtained from the run time environment (RTI) 

 



Figure 4.4  Mapping simulation state data to LMS data elements 

 

4.2  Case 2: SCORM/HLA prototype 

A prototype funded through the ADL Joint CoLab in 
Orlando is underway to build a SCORM/HLA 
demonstration that integrates instruction and simulation.  
The work is being performed by the ADL Joint CoLab [4] 
and Intelligent Automation, Inc. [5] in Rockville 
Maryland.  As of this writing, the project was still in the 
design stage. 

The prototype incorporates an existing simulation that 
teaches Air Traffic Flow Coordinators to optimize air 
traffic flow through specific control spaces.  The 
simulator is called the Collaborative Regional Flow 
Control (CRFC) Decision Support Tool (DST).  Its design 
documents call for a prototype system that “elegantly 
incorporates didactic instruction, performance 
demonstration, guided simulation, performance-based 
assessment, and written assessment into a unitary learning 
experience.”  

The prototype will be managed by an LMS that launches 
a “simulation manager” content object (a SCO) that 
initializes and launches the HLA-based simulation.  The 

SCO then becomes a federate of the simulation and 
provides a communications link between the federates 
and the LMS.   The simulation includes a special client 
class that passes simulation messages to the SCO.  One of 
these classes, called “SimAssessment”, translates the 
messages from the simulation’s RTI into SCORM 
performance data.   

The method for mapping simulation data to LMS data is 
still in development. However the early design documents 
identify SCORM data elements to be used. 

The prototype design includes an “RtiScoInterfaceAgent” 
that receives messages containing data about the state of 
the simulation.  Thus there is the means to “listen in” to 
the data passing through the simulation’s RTI, map 
certain data states to LMS performance metrics, and 
return these metrics back to the LMS. 

The project is still in the design phase and the exact 
method of mapping HLA RTI data to LMS performance 
data has not been determined.  However, the mechanics 
for connecting the two environments appear very similar 
to the Boeing prototype. 

LMSSetValue(cmi.interactions.0.id,onRunway)
LMSSetValue(cmi.interactions.0.type,performance)
LMSSetValue(cmi.interactions.0.time,13:54:54.66)
LMSSetValue(cmi.interactions.0.latency,00:02:15.88)
LMSSetValue(cmi.interactions.0.correct_responses.0.pat
tern,true)
LMSSetValue(cmi.interactions.0.student_response,false)
LMSSetValue(cmi.interactions.0.result,wrong)

LMSSetValue(cmi.interactions.1.id,wire)
LMSSetValue(cmi.interactions.1.student_response,0)
LMSSetValue(cmi.interactions.2.id,speed)
LMSSetValue(cmi.interactions.2.correct_responses.0.pat
tern,125)
LMSSetValue(cmi.interactions.2.student_response,0)
LMSSetValue(cmi.interactions.2.result,wrong)
LMSSetValue(cmi.interactions.3.id,flightPath)
LMSSetValue(cmi.interactions.3.student_response,-4)
LMSSetValue(cmi.interactions.4.id,missDistance)
LMSSetValue(cmi.interactions.4.student_response,-
941.3)
LMSSetValue(cmi.interactions.4.result,wrong)
LMSSetValue(cmi.interactions.5.id,hdgError)
LMSSetValue(cmi.interactions.5.student_response,0)
LMSSetValue(cmi.interactions.5.result,correct)
LMSSetValue(cmi.interactions.6.id,diveRate)
LMSSetValue(cmi.interactions.6.student_response,734)
LMSSetValue(cmi.interactions.6.result,correct)
LMSSetValue(cmi.interactions.7.id,flapsDown)
LMSSetValue(cmi.interactions.7.student_response,true)
LMSSetValue(cmi.interactions.8.id,gearDown)
LMSSetValue(cmi.interactions.8.student_response,true)



Function LMS Data Model Elements Simulation Purpose 
Control (start/pause/restart) cmi.suspend_data Stores location and state data of 

the simulation between sim 
sessions 

Setup Parameters cmi.sttudent_data. 
  max_time_allowed 
cmi.student_data. 
  Mastery_score 

Can be used to indicate the 
simulation termination 
conditions.  

Personalization parameters cmi.core.student._id 
cmi.core.student_name 
cmi.student_preference. 
   Language 
cmi.student_preference. 
   audio 

Can be used to personalize 
simulation presentation. 

Performance Data cmi.core.score.raw 
cmi.core.score.max 
cmi.core.score.min 
cmi.objectives.n.score.raw 
cmi.objectives.n.score.max 
cmi.objectives.n.score.min 

Native simulator performance 
metrics can be stored as a list of 
score elements.  These could 
form part of an overall 
performance outcome measure. 

Overall Status cmi.core.lesson_status 
“passed, completed, failed, 
incomplete, not attempted” 

Overall simulation status could be 
determined from the overall 
score.  This outcome could then 
be used for student tracking and 
sequencing. 

Figure 4.5  SCORM data elements to be used in the CRFC decision support tool. 

 

4.3  Case 3: Civil support team trainer prototype 

Working with the Joint ADL Co-Lab, the Army Research, 
Development and Engineering Command, and the 
National Guard Bureau, Engineering & Computer 
Simulations, Inc. [6] (ECS) developed a training 
prototype that integrates simulation and SCORM-based 
learning content.  Called the Civil Support Team Trainer 
(CCST), this system provides training exercises for 
individuals and groups in Civil Support Teams who must 
deal with weapons of mass destruction.  The prototype 
provides short, goal-oriented simulation scenarios with 
specific training objectives. 

An LMS is used to control the presentation of courseware 
from four different components: web-based instruction, 
virtual instruction, practice, and assessment. Web-based 
instruction was developed to explain a set of skills and 
how they are to be applied in a specific context.  Once 
students complete the instruction, they enter a team-based 
simulation environment that builds proficiency for sub-
tasks that contribute in turn to overall mastery for a given 
instructional objective. Assessments are gathered within 
the simulation scenarios by monitoring particular 
simulation state data, the results of which are returned to 
the LMS as objective “satisfied” or “not satisfied.”  The 

LMS then determines the appropriate instructional path 
based on mastery of the objective. 

The simulations are created using a commercial off the 
shelf 3D simulation engine called Gamebryo from 
Numerical Design Limited (NDL) [7].  This engine is 
used by a number of game developers and is a simulation 
rendering platform that was integrated into the CCST 
prototype.  Gamebryo is not HLA compliant and does not 
use the HLA RTI, but it has similar functionality to HLA-
based simulations.  It also has toolkits and interfaces that 
permit its data to be viewed and modified.  The engine is 
aimed at developers of commercial games.  There are 
many such simulation platforms/engines in the gaming 
industry that can be used to develop new “worlds.”  Each 
have their own strengths, weaknesses, capabilities and 
models.  For this prototype ECS selected the Gamebryo 
engine as the simulation component of the overall training 
environment and then constructed “middleware” that 
operates between Gamebryo and the LMS to translate the 
state data of the simulation to mastery data the LMS can 
then comprehend and act upon. 

A key to the success of this prototype was the concept of 
“chunking” simulation scenarios into a size and scope that 
address particular instructional objectives.  This way 
simulation scenarios and instructional material can share 



performance data more precisely since both the scenario 
and the instruction were designed with the same objective 
in mind. This approach deviates from traditional 
simulators that have no overt instructional oversight or 
intervention.  

 
5.  Conclusions and Observations 
All three prototypes use an LMS to manage the 
instruction. In other words, the LMS is “in charge”.  The 
LMS administers assessments, instructional content, and 
then launches a SCO that initializes and launches (or 
federates with) a simulation.  When the simulation ends, 
the LMS in all three cases receives mastery information 
derived from simulation state-data.  This approach of 
integrating two widely different environments, each with 
totally different data models (one for tracking learner 
performance, and one that models the world), appears to 
be a viable strategy for integrating “learning and doing”.   

All three prototypes create links between the LMS and the 
simulation by launching a SCO which then either 
connects to (via middleware) or becomes part of a 
simulation as a communications and translation bridge.  
The actual translation of simulation data occurs along this 
link so that each of the environments operate 
independently of one another.  This means that the LMS 
and the simulation environments did not have to be 
modified to integrate and operate together.    

Each of the prototype cases use scenarios that map to 
particular learning objectives.  In Cases 1 and 2 (landing a 
plane and ILS training), the scenario initializes special-
built simulations to create conditions that are specifically 
relevant for the given instructional objectives.  In Case 3 
(Civil Support Team Trainer), a simulated world is 
created and initialized to match the objectives. All three 
cases operate similarly except that Case 3 builds scenarios 
ground-up expressly to integrate with instructional 
material whereas the first two cases adapt pre-existing 
simulators.   

All three cases report mastery information from the 
simulation back to the LMS by mapping simulation state 
to the LMSs data model. This process may well be the 
hardest part about integrating the environments.  In 
Boeing’s case, for example, mapping all of the elements 
of a successful landing requires keeping track of a large 
number of details such as speed, flight path, flaps 
position, landing gear state, etc.  Designing a large 
number of scenarios could become complex and since a 
fair amount of time must be invested in developing 
instructional strategies that use this information.   

These prototypes show that HLA provides a useful 
mechanism for transmitting simulation data through the 
RTI.  SCOs are used as intermediate agents for hiding the 
complex data constructs that constitute proficiency in a 
simulation from the LMS.  This process suggests a more 
standardized object-oriented approach might be 
developed for hiding the methods of mapping but exposes 
appropriate data forms to simulations and LMSs.  One 
might devise a standardized HLA-SCORM interface 
object that could then be reused and reinitialized for each 
new scenario.  HLA’s RTI seems especially well suited 
for building such an object through the “federation object 
model” (FOM) process.  This may be a good next step for 
development. 

The three prototypes all must initialize simulations and 
save their state for later entry and use.  Currently SCORM 
lacks an adequate mechanism to do this.  However, the 
IMS Global Learning Consortium [8] may address this 
issue with the Sharable State Persistence (SSP) 
specification. SSP defines how an LMS can save and 
retrieve blocks of data that can then be used to initialize 
simulations.  Best practices for implementing SSP are 
expected to appear by the end of 2004.   

 
6.  Summary 
These prototypes suggest that to link learning 
environments to simulations, four basic components are 
required: a communications link, access to simulation 
state data, a map of simulation data to LMS performance 
data, and simulation scenarios that can map to learning 
objectives.  Developing intermediate agents to aid in the 
mapping seems to be an area ripe for new research.   

Going further, one can imagine agents becoming more 
intelligent and embedded within a simulation, intervening 
and adapting seamlessly with the simulation.  The lessons 
learned in these prototypes lead us in this direction by 
creating direct links with data that help meet proficiency 
and instructional objectives.  As agent technology 
improves, the functionalities of an LMS may migrate 
inside the simulation model and become part of it.  We 
might then have the agile “simulation tutors” required by 
today’s operating environments.   
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